Bounding the cop number of a graph by its genus

Nathan Bowler, Joshua Erde, Florian Lehner, Max Pitz

Publikation: ArbeitspapierWorking paper

Abstract

It is known that the cop number $c(G)$ of a connected graph $G$ can be bounded as a function of the genus of the graph $g(G)$. The best known bound, that $c(G) \leq \left\lfloor \frac{3 g(G)}{2}\right\rfloor + 3$, was given by Schr\"{o}der, who conjectured that in fact $c(G) \leq g(G) + 3$. We give the first improvement to Schr\"{o}der's bound, showing that $c(G) \leq \frac{4g(G)}{3} + \frac{10}{3}$.
Originalspracheenglisch
Seitenumfang36
PublikationsstatusVeröffentlicht - 5 Nov 2019

Fingerprint

Untersuchen Sie die Forschungsthemen von „Bounding the cop number of a graph by its genus“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren