Boundary Representations of λ-Harmonic and Polyharmonic Functions on Trees

Angelo Massimo Picardello, Wolfgang Woess

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

On a countable tree T, allowing vertices with infinite degree, we consider an arbitrary stochastic irreducible nearest neighbour transition operator P. We provide a boundary integral representation for general eigenfunctions of P with eigenvalue λ ∈ C. This is possible whenever λ is in the resolvent set of P as a self-adjoint operator on a suitable ℓ2-space and the diagonal elements of the resolvent (“Green function”) do not vanish at λ. We show that when P is invariant under a transitive (not necessarily fixed-point-free) group action, the latter condition holds for all λ≠ 0 in the resolvent set. These results extend and complete previous results by Cartier, by Figà-Talamanca and Steger, and by Woess. For those eigenvalues, we also provide an integral representation of λ-polyharmonic functions of any order n, that is, functions f:T→C for which (λ ⋅ I − P)nf = 0. This is a far-reaching extension of work of Cohen et al., who provided such a representation for the simple random walk on a homogeneous tree and eigenvalue λ = 1. Finally, we explain the (much simpler) analogous results for “forward only” transition operators, sometimes also called martingales on trees.
Originalspracheenglisch
Seiten (von - bis) 541-561
FachzeitschriftPotential analysis
Jahrgang51
Ausgabenummer4
DOIs
PublikationsstatusVeröffentlicht - 2019

Fields of Expertise

  • Information, Communication & Computing

Fingerprint Untersuchen Sie die Forschungsthemen von „Boundary Representations of λ-Harmonic and Polyharmonic Functions on Trees“. Zusammen bilden sie einen einzigartigen Fingerprint.

  • Dieses zitieren