Betti splitting from a topological point of view

Davide Bolognini*, Ulderico Fugacci

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

A Betti splitting I = J + K of a monomial ideal I ensures the recovery of the graded Betti numbers of I starting from those of J,K and J K. In this paper, we introduce an analogous notion for simplicial complexes, using Alexander duality, proving that it is equivalent to a recursive splitting condition on links of some vertices. We provide results ensuring the existence of a Betti splitting for a simplicial complex , relating it to topological properties of . Among other things, we prove that orientability for a manifold without boundary is equivalent to the admission of a Betti splitting induced by the removal of a single facet. Taking advantage of our topological approach, we provide the first example of a monomial ideal which admits Betti splittings in all characteristics but with characteristic-dependent resolution. Moreover, we introduce new numerical descriptors for simplicial complexes and topological spaces, useful to deal with questions concerning the existence of Betti splitting.

Originalspracheenglisch
Aufsatznummer2050116
FachzeitschriftJournal of Algebra and its Applications
Jahrgang19
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - 1 Jun 2020

ASJC Scopus subject areas

  • !!Algebra and Number Theory
  • Angewandte Mathematik

Fingerprint Untersuchen Sie die Forschungsthemen von „Betti splitting from a topological point of view“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren