Berry-Esseen smoothing inequality for the Wasserstein metric on compact Lie groups

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung


We prove a sharp general inequality estimating the distance of two probability measures on a compact Lie group in the Wasserstein metric in terms of their Fourier transforms. We use a generalized form of the Wasserstein metric, related by Kantorovich duality to the family of functions with an arbitrarily prescribed modulus of continuity. The proof is based on smoothing with a suitable kernel, and a Fourier decay estimate for continuous functions. As a corollary, we show that the rate of convergence of random walks on semisimple groups in the Wasserstein metric is necessarily almost exponential, even without assuming a spectral gap. Applications to equidistribution and empirical measures are also given.

FachzeitschriftThe Journal of Fourier Analysis and Applications
PublikationsstatusVeröffentlicht - Apr. 2021

ASJC Scopus subject areas

  • Analyse
  • Angewandte Mathematik
  • Mathematik (insg.)


Untersuchen Sie die Forschungsthemen von „Berry-Esseen smoothing inequality for the Wasserstein metric on compact Lie groups“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren