Bayesian parametric analytic continuation of Green's functions

Michael Rumetshofer, Daniel Bauernfeind, Wolfgang von der Linden

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

Bayesian parametric analytic continuation (BPAC) is proposed for the analytic continuation of noisy imaginary-time Green’s function data as, e.g., obtained by continuous-time quantum Monte Carlo simulations (CTQMC). Within BPAC, the spectral function is inferred from a suitable set of parametrized basis functions. Bayesian model comparison then allows to assess the reliability of different parametrizations. The required evidence integrals of such a model comparison are determined by nested sampling. Compared to the maximum entropy method (MEM), routinely used for the analytic continuation of CTQMC data, the presented approach allows to infer whether the data support specific structures of the spectral function. We demonstrate the capability of BPAC in terms of CTQMC data for an Anderson impurity model (AIM) that shows a generalized Kondo scenario and compare the BPAC reconstruction to the MEM as well as to the spectral function obtained from the real-time fork tensor product state impurity solver where no analytic continuation is required. Furthermore, we present a combination of MEM and BPAC and its application to an AIM arising from the ab initio treatment of SrVO3 .
Originalspracheenglisch
Aufsatznummer075137
FachzeitschriftPhysical Review / B
Jahrgang100
Ausgabenummer7
DOIs
PublikationsstatusVeröffentlicht - 19 Aug 2019

Fingerprint Untersuchen Sie die Forschungsthemen von „Bayesian parametric analytic continuation of Green's functions“. Zusammen bilden sie einen einzigartigen Fingerprint.

  • Dieses zitieren