Bayesian Neural Networks with Weight Sharing Using Dirichlet Processes

Wolfgang Roth, Franz Pernkopf

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

We extend feed-forward neural networks with a Dirichlet process prior over the weight distribution. This enforces a sharing on the network weights, which can reduce the overall number of parameters drastically. We alternately sample from the posterior of the weights and the posterior of assignments of network connections to the weights. This results in a weight sharing that is adopted to the given data. In order to make the procedure feasible, we present several techniques to reduce the computational burden. Experiments show that our approach mostly outperforms models with random weight sharing. Our model is capable of reducing the memory footprint substantially while maintaining a good performance compared to neural networks without weight sharing.

Originalspracheenglisch
Aufsatznummer42(1)
Seiten (von - bis)246-252
FachzeitschriftIEEE Transactions on Pattern Analysis and Machine Intelligence
Jahrgang42
Ausgabenummer1
DOIs
PublikationsstatusElektronische Veröffentlichung vor Drucklegung. - 6 Dez 2018

ASJC Scopus subject areas

  • Software
  • Maschinelles Sehen und Mustererkennung
  • Theoretische Informatik und Mathematik
  • Artificial intelligence
  • Angewandte Mathematik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Bayesian Neural Networks with Weight Sharing Using Dirichlet Processes“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren