Auxiliary master equation approach within stochastic wave functions

Delia Maria Fugger, Max Erich Sorantin, Antonius Dorda, Wolfgang von der Linden, Enrico Arrigoni

Publikation: KonferenzbeitragPosterForschung

Abstract

The auxiliary master equation approach AMEA [1–3] allows us to assess the time evolution and, in particular, the steady state properties of quantum impurities and small molecules in as well as out of equilibrium. It is based on a mapping of the physical system to an auxiliary open quantum system, whose dynamics is determined by a Lindblad master equation. In this poster I will present results obtained from a scheme to address the resulting Lindblad equation based on the stochastic evolution of the wave function [4–7]. A set of wave functions sampling the density operator is propagated by piecewise deterministic time evolutions, which are interrupted by stochastic jump processes [7]. This implementation aims at extending the capabilities of the AMEA approach as well as making it more efficient.

[1] E. Arrigoni, M. Knap, and W. von der Linden, Phys. Rev. Lett. 110, 086403 (2013).
[2] A. Dorda, M. Nuss, W. von der Linden, and E. Arrigoni, Phys. Rev. B 89, 165105 (2014).
[3] A. Dorda, M. Ganahl, H. G. Evertz, W. von der Linden, and E. Arrigoni, Phys. Rev. B 92, 125145 (2015).
[4] J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett. 68, 580 (1992).
[5] K. Mølmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993).
[6] H.-P. Breuer, B. Kappler, and F. Petruccione, Phys. Rev. A 56, 2334 (1997).
[7] B. Kappler, Ph.D. thesis, Albert-Ludwigs-Universität Freiburg (1998).
Originalspracheenglisch
PublikationsstatusVeröffentlicht - 5 Apr 2018
VeranstaltungFrom Electrons to Phase Transitions 2018 - Christian Doppler lecture hall, Faculty of Physics, Strudlhofgasse 4/Boltzmanngasse 5, 1090 Vienna , Vienna, Österreich
Dauer: 4 Apr 20186 Apr 2018
https://www.sfb-vicom.at/events/conference-2018-from-electrons-to-phase-transitions-2018/

Konferenz

KonferenzFrom Electrons to Phase Transitions 2018
KurztitelEPT 2018
LandÖsterreich
OrtVienna
Zeitraum4/04/186/04/18
Internetadresse

Fingerprint

wave functions
theses
stochastic processes
sampling
operators
impurities
molecules

ASJC Scopus subject areas

  • !!Physics and Astronomy(all)

Fields of Expertise

  • Advanced Materials Science

Dies zitieren

Fugger, D. M., Sorantin, M. E., Dorda, A., von der Linden, W., & Arrigoni, E. (2018). Auxiliary master equation approach within stochastic wave functions. Postersitzung präsentiert bei From Electrons to Phase Transitions 2018, Vienna, Österreich.

Auxiliary master equation approach within stochastic wave functions. / Fugger, Delia Maria; Sorantin, Max Erich; Dorda, Antonius; von der Linden, Wolfgang; Arrigoni, Enrico.

2018. Postersitzung präsentiert bei From Electrons to Phase Transitions 2018, Vienna, Österreich.

Publikation: KonferenzbeitragPosterForschung

Fugger, DM, Sorantin, ME, Dorda, A, von der Linden, W & Arrigoni, E 2018, 'Auxiliary master equation approach within stochastic wave functions', Vienna, Österreich, 4/04/18 - 6/04/18, .
Fugger DM, Sorantin ME, Dorda A, von der Linden W, Arrigoni E. Auxiliary master equation approach within stochastic wave functions. 2018. Postersitzung präsentiert bei From Electrons to Phase Transitions 2018, Vienna, Österreich.
Fugger, Delia Maria ; Sorantin, Max Erich ; Dorda, Antonius ; von der Linden, Wolfgang ; Arrigoni, Enrico. / Auxiliary master equation approach within stochastic wave functions. Postersitzung präsentiert bei From Electrons to Phase Transitions 2018, Vienna, Österreich.
@conference{902db87ad2874fe68e25211d5ad44c1b,
title = "Auxiliary master equation approach within stochastic wave functions",
abstract = "The auxiliary master equation approach AMEA [1–3] allows us to assess the time evolution and, in particular, the steady state properties of quantum impurities and small molecules in as well as out of equilibrium. It is based on a mapping of the physical system to an auxiliary open quantum system, whose dynamics is determined by a Lindblad master equation. In this poster I will present results obtained from a scheme to address the resulting Lindblad equation based on the stochastic evolution of the wave function [4–7]. A set of wave functions sampling the density operator is propagated by piecewise deterministic time evolutions, which are interrupted by stochastic jump processes [7]. This implementation aims at extending the capabilities of the AMEA approach as well as making it more efficient.[1] E. Arrigoni, M. Knap, and W. von der Linden, Phys. Rev. Lett. 110, 086403 (2013).[2] A. Dorda, M. Nuss, W. von der Linden, and E. Arrigoni, Phys. Rev. B 89, 165105 (2014).[3] A. Dorda, M. Ganahl, H. G. Evertz, W. von der Linden, and E. Arrigoni, Phys. Rev. B 92, 125145 (2015).[4] J. Dalibard, Y. Castin, and K. M{\o}lmer, Phys. Rev. Lett. 68, 580 (1992).[5] K. M{\o}lmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993).[6] H.-P. Breuer, B. Kappler, and F. Petruccione, Phys. Rev. A 56, 2334 (1997).[7] B. Kappler, Ph.D. thesis, Albert-Ludwigs-Universit{\"a}t Freiburg (1998).",
author = "Fugger, {Delia Maria} and Sorantin, {Max Erich} and Antonius Dorda and {von der Linden}, Wolfgang and Enrico Arrigoni",
year = "2018",
month = "4",
day = "5",
language = "English",
note = "From Electrons to Phase Transitions 2018, EPT 2018 ; Conference date: 04-04-2018 Through 06-04-2018",
url = "https://www.sfb-vicom.at/events/conference-2018-from-electrons-to-phase-transitions-2018/",

}

TY - CONF

T1 - Auxiliary master equation approach within stochastic wave functions

AU - Fugger, Delia Maria

AU - Sorantin, Max Erich

AU - Dorda, Antonius

AU - von der Linden, Wolfgang

AU - Arrigoni, Enrico

PY - 2018/4/5

Y1 - 2018/4/5

N2 - The auxiliary master equation approach AMEA [1–3] allows us to assess the time evolution and, in particular, the steady state properties of quantum impurities and small molecules in as well as out of equilibrium. It is based on a mapping of the physical system to an auxiliary open quantum system, whose dynamics is determined by a Lindblad master equation. In this poster I will present results obtained from a scheme to address the resulting Lindblad equation based on the stochastic evolution of the wave function [4–7]. A set of wave functions sampling the density operator is propagated by piecewise deterministic time evolutions, which are interrupted by stochastic jump processes [7]. This implementation aims at extending the capabilities of the AMEA approach as well as making it more efficient.[1] E. Arrigoni, M. Knap, and W. von der Linden, Phys. Rev. Lett. 110, 086403 (2013).[2] A. Dorda, M. Nuss, W. von der Linden, and E. Arrigoni, Phys. Rev. B 89, 165105 (2014).[3] A. Dorda, M. Ganahl, H. G. Evertz, W. von der Linden, and E. Arrigoni, Phys. Rev. B 92, 125145 (2015).[4] J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett. 68, 580 (1992).[5] K. Mølmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993).[6] H.-P. Breuer, B. Kappler, and F. Petruccione, Phys. Rev. A 56, 2334 (1997).[7] B. Kappler, Ph.D. thesis, Albert-Ludwigs-Universität Freiburg (1998).

AB - The auxiliary master equation approach AMEA [1–3] allows us to assess the time evolution and, in particular, the steady state properties of quantum impurities and small molecules in as well as out of equilibrium. It is based on a mapping of the physical system to an auxiliary open quantum system, whose dynamics is determined by a Lindblad master equation. In this poster I will present results obtained from a scheme to address the resulting Lindblad equation based on the stochastic evolution of the wave function [4–7]. A set of wave functions sampling the density operator is propagated by piecewise deterministic time evolutions, which are interrupted by stochastic jump processes [7]. This implementation aims at extending the capabilities of the AMEA approach as well as making it more efficient.[1] E. Arrigoni, M. Knap, and W. von der Linden, Phys. Rev. Lett. 110, 086403 (2013).[2] A. Dorda, M. Nuss, W. von der Linden, and E. Arrigoni, Phys. Rev. B 89, 165105 (2014).[3] A. Dorda, M. Ganahl, H. G. Evertz, W. von der Linden, and E. Arrigoni, Phys. Rev. B 92, 125145 (2015).[4] J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett. 68, 580 (1992).[5] K. Mølmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993).[6] H.-P. Breuer, B. Kappler, and F. Petruccione, Phys. Rev. A 56, 2334 (1997).[7] B. Kappler, Ph.D. thesis, Albert-Ludwigs-Universität Freiburg (1998).

M3 - Poster

ER -