Automatic localization of locally similar structures based on the scale-widening random regression forest

Darko Stern, Thomas Ebner, Martin Urschler

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem Konferenzband

Abstract

Selection of set of training pixels and feature range show to be critical scale-related parameters with high impact on results in localization methods based on random regression forests (RRF). Trained on pixels randomly selected from images with long range features, RRF captures the variation in landmark location but often without reaching satisfying accuracy. Conversely, training an RRF with short range features in a landmark's close surroundings enables accurate localization, but at the cost of ambiguous localization results in the presence of locally similar structures. We present a scale-widening RRF method that effectively handles such ambiguities. On a challenging hand radiography image data set, we achieve median and 90th percentile localization errors of 0.81 and 2.64mm, respectively, outperforming related state-of-the-art methods.
Originalspracheenglisch
Titel2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers
Seiten1422-1425
Seitenumfang4
DOIs
PublikationsstatusVeröffentlicht - Mai 2016
Veranstaltung2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) - Prague, Tschechische Republik
Dauer: 13 Apr 201616 Apr 2016

Konferenz

Konferenz2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI)
LandTschechische Republik
OrtPrague
Zeitraum13/04/1616/04/16

Fields of Expertise

  • Information, Communication & Computing

Fingerprint Untersuchen Sie die Forschungsthemen von „Automatic localization of locally similar structures based on the scale-widening random regression forest“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren