Attosecond band-gap dynamics in silicon

Martin Schultze*, Krupa Ramasesha, C. D. Pemmaraju, S. A. Sato, D. Whitmore, A. Gandman, James S. Prell, L. J. Borja, D. Prendergast, K. Yabana, Daniel M. Neumark, Stephen R. Leone

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Electron transfer from valence to conduction band states in semiconductors is the basis of modern electronics. Here, attosecond extreme ultraviolet (XUV) spectroscopy is used to resolve this process in silicon in real time. Electrons injected into the conduction band by few-cycle laser pulses alter the silicon XUV absorption spectrum in sharp steps synchronized with the laser electric field oscillations. The observed 450-attosecond step rise time provides an upper limit for the carrier-induced band-gap reduction and the electron-electron scattering time in the conduction band. This electronic response is separated from the subsequent band-gap modifications due to lattice motion, which occurs on a time scale of 60 ∓ 10 femtoseconds, characteristic of the fastest optical phonon. Quantum dynamical simulations interpret the carrier injection step as light-field-induced electron tunneling.

Originalspracheenglisch
Seiten (von - bis)1348-1352
Seitenumfang5
FachzeitschriftScience
Jahrgang346
Ausgabenummer6215
DOIs
PublikationsstatusVeröffentlicht - 12 Dez. 2014
Extern publiziertJa

ASJC Scopus subject areas

  • Allgemein

Fields of Expertise

  • Advanced Materials Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „Attosecond band-gap dynamics in silicon“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren