An integrative computational framework for personalized detection of tumor epitopes in melanoma immunotherapy

T Jaitly, N Schaft, J Doerrie, S Gross, B Schuler-Thurner, O Wolkenhauer, G Schuler, L Taher, S Gupta, J Vera

Publikation: ArbeitspapierWorking paper

Abstract

In aggressive solid tumors like melanoma, a strategy for therapy personalization can be achieved by combining high-throughput data on the patient’s specific tumor mutation and expression profiles. A remarkable case is dendritic cell-based immunotherapy, where tumor epitopes identified from the patient’s specific mutation profiles are loaded on patient-derived mature dendritic cells to stimulate cytotoxic T cell mediated anticancer immunity. Here we present a personalized computational pipeline for the selection of tumor-specific epitopes based on 1) patient specific haplotype; 2) cancer associated mutations; and 3) expression profiles of mutation carrying genes. We applied our workflow to one melanoma patient. Specifically, we analyzed tumor whole exome sequencing and RNA sequencing data to first detect tumor-specific mutations followed by epitope prediction based on the patient’s HLA haplotype and filtering of epitopes using expression profile and binding affinity. We performed docking studies to predict the best set of epitopes targeting the patient’s alleles. The proposed workflow enables us to find personalized tumor-specific epitopes for stimulating cytotoxic T-cell responses.
Originalspracheenglisch
HerausgeberPeerJ Preprints
Band4:e2385v1
DOIs
PublikationsstatusVeröffentlicht - Aug 2016
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „An integrative computational framework for personalized detection of tumor epitopes in melanoma immunotherapy“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren