Algorithms for Reasoning in a Default Logic Instantiation of Assumption-Based Argumentation

Tuomo Lehtonen, Johannes Peter Wallner, Matti Järvisalo

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Assumption-based argumentation (ABA) is one of the most-studied formalisms for structured argumentation. While ABA is a general formalism that can be instantiated with various different logics, most attention from the computational perspective has been focused on the logic programming (LP) instantiation of ABA. Going beyond the LP-instantiation, we develop an algorithmic approach to reasoning in the propositional default logic (DL) instantiation of ABA. Our approach is based on iterative applications of Boolean satisfiability (SAT) solvers as a natural choice for implementing derivations as entailment checks in DL. We instantiate the approach for deciding acceptance and for assumption-set enumeration in the DL-instantiation of ABA under several central argumentation semantics, and empirically evaluate an implementation of the approach.
Originalspracheenglisch
TitelProceedings COMMA
Redakteure/-innenFrancesca Toni, Sylwia Polberg, Richard Booth, Martin Caminada, Hiroyuki Kido
Seiten236-247
DOIs
PublikationsstatusVeröffentlicht - 2022
Veranstaltung9th International Conference on Computational Models of Argument: COMMA 2022 - Cardiff, Großbritannien / Vereinigtes Königreich
Dauer: 14 Sep. 202216 Sep. 2022
https://comma22.cs.cf.ac.uk/

Publikationsreihe

NameFrontiers in Artificial Intelligence and Applications
Herausgeber (Verlag)IOS Press
Band353

Konferenz

Konferenz9th International Conference on Computational Models of Argument
KurztitelCOMMA 2022
Land/GebietGroßbritannien / Vereinigtes Königreich
OrtCardiff
Zeitraum14/09/2216/09/22
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Algorithms for Reasoning in a Default Logic Instantiation of Assumption-Based Argumentation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren