A549 In-silico 1.0: A first computational model to simulate cell cycle dependent ion current modulation in the human lung adenocarcinoma

Sonja Langthaler, Theresa Margarethe Rienmüller, Susanne Scherübel, Brigitte Pelzmann, Niroj Shrestha , Klaus Zorn-Pauly, Wolfgang Schreibmayer, Andrew Koff, Christian Baumgartner*

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

Lung cancer is still a leading cause of death worldwide. In recent years, knowledge has been obtained of the mechanisms modulating ion channel kinetics and thus of cell bioelectric properties, which is promising for oncological biomarkers and targets. The complex interplay of channel expression and its consequences on malignant processes, however, is still insufficiently understood. We here introduce the first approach of an in-silico whole-cell ion current model of a cancer cell, in particular of the A549 human lung adenocarcinoma, including the main functionally expressed ion channels in the plasma membrane as so far known. This hidden Markov-based model represents the electrophysiology behind proliferation of the A549 cell, describing its rhythmic oscillation of the membrane potential able to trigger the transition between cell cycle phases, and it predicts membrane potential changes over the cell cycle provoked by targeted ion channel modulation. This first A549 in-silico cell model opens up a deeper insight and understanding of possible ion channel interactions in tumor development and progression, and is a valuable tool for simulating altered ion channel function in lung cancer electrophysiology.
Originalspracheenglisch
Aufsatznummere1009091
Seitenumfang28
FachzeitschriftPLoS Computational Biology
Jahrgang17
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - 22 Jun 2021

Fields of Expertise

  • Human- & Biotechnology

Fingerprint

Untersuchen Sie die Forschungsthemen von „A549 In-silico 1.0: A first computational model to simulate cell cycle dependent ion current modulation in the human lung adenocarcinoma“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren