A Shape-Induced Orientation Phase within 3D Nanocrystal Solids

Max Burian, Carina Karner, Maksym Yarema, Wolfgang Heiss, Heinz Amenitsch, Christoph Dellago, Rainer T Lechner

Publikation: Beitrag in einer FachzeitschriftArtikelForschungBegutachtung


When nanocrystals self assemble into ordered superstructures they form functional solids that may inherit the electronical properties of the single nanocrystals. To what extent these properties are enhanced depends on the positional and orientational order of the nanocrystals within the superstructure. Here, the formation of micrometer-sized free-standing supercrystals of faceted 20 nm Bi nanocrystals is investigated. The self-assembly process, induced by nonsolvent into solvent diffusion, is probed in situ by synchrotron X-ray scattering. The diffusion-gradient is identified as the critical parameter for controlling the supercrystal-structure as well as the alignment of the supercrystals with respect to the substrate. Monte Carlo simulations confirm the positional order of the nanocrystals within these superstructures and reveal a unique orientation phase: the nanocrystal shape, determined by the atomic Bi crystal structure, induces a total of 6 global orientations based on facet-to-facet alignment. This parallel alignment of facets is a prerequisite for optimized electronic and optical properties within designed nanocrystal solids.

FachzeitschriftAdvanced Materials
PublikationsstatusVeröffentlicht - 26 Jun 2018


    Fingerprint Untersuchen Sie die Forschungsthemen von „A Shape-Induced Orientation Phase within 3D Nanocrystal Solids“. Zusammen bilden sie einen einzigartigen Fingerprint.

  • Dieses zitieren

    Burian, M., Karner, C., Yarema, M., Heiss, W., Amenitsch, H., Dellago, C., & Lechner, R. T. (2018). A Shape-Induced Orientation Phase within 3D Nanocrystal Solids. Advanced Materials, 30(32), [1802078]. https://doi.org/10.1002/adma.201802078