Abstract
When nanocrystals self assemble into ordered superstructures they form functional solids that may inherit the electronical properties of the single nanocrystals. To what extent these properties are enhanced depends on the positional and orientational order of the nanocrystals within the superstructure. Here, the formation of micrometer-sized free-standing supercrystals of faceted 20 nm Bi nanocrystals is investigated. The self-assembly process, induced by nonsolvent into solvent diffusion, is probed in situ by synchrotron X-ray scattering. The diffusion-gradient is identified as the critical parameter for controlling the supercrystal-structure as well as the alignment of the supercrystals with respect to the substrate. Monte Carlo simulations confirm the positional order of the nanocrystals within these superstructures and reveal a unique orientation phase: the nanocrystal shape, determined by the atomic Bi crystal structure, induces a total of 6 global orientations based on facet-to-facet alignment. This parallel alignment of facets is a prerequisite for optimized electronic and optical properties within designed nanocrystal solids.
Originalsprache | englisch |
---|---|
Aufsatznummer | 1802078 |
Seitenumfang | 7 |
Fachzeitschrift | Advanced Materials |
Jahrgang | 30 |
Ausgabenummer | 32 |
DOIs | |
Publikationsstatus | Veröffentlicht - 26 Jun 2018 |
Fingerprint
Schlagwörter
Dies zitieren
A Shape-Induced Orientation Phase within 3D Nanocrystal Solids. / Burian, Max; Karner, Carina; Yarema, Maksym; Heiss, Wolfgang; Amenitsch, Heinz; Dellago, Christoph; Lechner, Rainer T.
in: Advanced Materials, Jahrgang 30, Nr. 32, 1802078, 26.06.2018.Publikation: Beitrag in einer Fachzeitschrift › Artikel › Forschung › Begutachtung
}
TY - JOUR
T1 - A Shape-Induced Orientation Phase within 3D Nanocrystal Solids
AU - Burian, Max
AU - Karner, Carina
AU - Yarema, Maksym
AU - Heiss, Wolfgang
AU - Amenitsch, Heinz
AU - Dellago, Christoph
AU - Lechner, Rainer T
N1 - © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PY - 2018/6/26
Y1 - 2018/6/26
N2 - When nanocrystals self assemble into ordered superstructures they form functional solids that may inherit the electronical properties of the single nanocrystals. To what extent these properties are enhanced depends on the positional and orientational order of the nanocrystals within the superstructure. Here, the formation of micrometer-sized free-standing supercrystals of faceted 20 nm Bi nanocrystals is investigated. The self-assembly process, induced by nonsolvent into solvent diffusion, is probed in situ by synchrotron X-ray scattering. The diffusion-gradient is identified as the critical parameter for controlling the supercrystal-structure as well as the alignment of the supercrystals with respect to the substrate. Monte Carlo simulations confirm the positional order of the nanocrystals within these superstructures and reveal a unique orientation phase: the nanocrystal shape, determined by the atomic Bi crystal structure, induces a total of 6 global orientations based on facet-to-facet alignment. This parallel alignment of facets is a prerequisite for optimized electronic and optical properties within designed nanocrystal solids.
AB - When nanocrystals self assemble into ordered superstructures they form functional solids that may inherit the electronical properties of the single nanocrystals. To what extent these properties are enhanced depends on the positional and orientational order of the nanocrystals within the superstructure. Here, the formation of micrometer-sized free-standing supercrystals of faceted 20 nm Bi nanocrystals is investigated. The self-assembly process, induced by nonsolvent into solvent diffusion, is probed in situ by synchrotron X-ray scattering. The diffusion-gradient is identified as the critical parameter for controlling the supercrystal-structure as well as the alignment of the supercrystals with respect to the substrate. Monte Carlo simulations confirm the positional order of the nanocrystals within these superstructures and reveal a unique orientation phase: the nanocrystal shape, determined by the atomic Bi crystal structure, induces a total of 6 global orientations based on facet-to-facet alignment. This parallel alignment of facets is a prerequisite for optimized electronic and optical properties within designed nanocrystal solids.
KW - Journal Article
U2 - 10.1002/adma.201802078
DO - 10.1002/adma.201802078
M3 - Article
VL - 30
JO - Advanced Materials
JF - Advanced Materials
SN - 0935-9648
IS - 32
M1 - 1802078
ER -