A residual a posteriori error estimate for the time–domain boundary element method

Heiko Gimperlein*, Ceyhun Özdemir, David Stark, Ernst P. Stephan

*Korrespondierende/r Autor/in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikel

Abstract

This article investigates residual a posteriori error estimates and adaptive mesh refinements for time-dependent boundary element methods for the wave equation. We obtain reliable estimates for Dirichlet and acoustic boundary conditions which hold for a large class of discretizations. Efficiency of the error estimate is shown for a natural discretization of low order. Numerical examples confirm the theoretical results. The resulting adaptive mesh refinement procedures in 3d recover the adaptive convergence rates known for elliptic problems.

Originalspracheenglisch
Seiten (von - bis)239-280
Seitenumfang42
FachzeitschriftNumerische Mathematik
Jahrgang146
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 1 Okt 2020

ASJC Scopus subject areas

  • !!Computational Mathematics
  • Angewandte Mathematik

Dieses zitieren