A Network-based Tool for Identifying Knowledge Risks in Data-Driven Business Models

Michael Fruhwirth, Viktoria Pammer-Schindler, Stefan Thalmann

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Data-driven technologies enable organizations to innovate new services and business models and thus hold the potential for new sources of revenue and business growth. However, such new data-driven business models impose new ways for unwanted knowledge spillovers. Current research on data-driven business models and knowledge risks provides little help to identify and discuss such novel risks within the innovation process. We have developed a network-based representation of data-driven business models within one case organization, where it helped to identify knowledge risks in the design process of data-driven business models. In this paper, we further evaluated the artifact through 17 interviews with experts from the domain of business models, data analytics and knowledge management. We found that the network-based representation is suitable to visualize, discuss and create awareness for knowledge risks and see types of data-related value objects and quantification of risks as two recommendations for further research.

Originalspracheenglisch
TitelProceedings of the 54th Annual Hawaii International Conference on System Sciences, HICSS 2021
Redakteure/-innenTung X. Bui
Seiten5218-5227
Seitenumfang10
ISBN (elektronisch)9780998133140
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung54th Annual Hawaii International Conference on System Sciences: HICSS 2021 - Virtual, Online, USA / Vereinigte Staaten
Dauer: 4 Jan 20218 Jan 2021

Publikationsreihe

NameProceedings of the Annual Hawaii International Conference on System Sciences
Band2020-January
ISSN (Print)1530-1605

Konferenz

Konferenz54th Annual Hawaii International Conference on System Sciences
Land/GebietUSA / Vereinigte Staaten
OrtVirtual, Online
Zeitraum4/01/218/01/21

ASJC Scopus subject areas

  • Ingenieurwesen (insg.)

Fingerprint

Untersuchen Sie die Forschungsthemen von „A Network-based Tool for Identifying Knowledge Risks in Data-Driven Business Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren