Projekte pro Jahr
Abstract
In this paper, we introduce a mean-field extension of the LIBOR market model (LMM) which preserves the basic features of the original model. Among others, these features are the martingale property, a directly implementable calibration and an economically reasonable parametrization of the classical LMM. At the same time, the mean-field LIBOR market model (MF-LMM) is designed to reduce the probability of exploding scenarios, arising in particular in the market-consistent valuation of long-Term guarantees. To this end, we prove existence and uniqueness of the corresponding MF-LMM and investigate its practical aspects, including Black's formula. Moreover, we present an extensive numerical analysis of the MF-LMM. The corresponding Monte Carlo method is based on a suitable interacting particle system which approximates the underlying mean-field equation.
Originalsprache | englisch |
---|---|
Aufsatznummer | 2250005 |
Seitenumfang | 35 |
Fachzeitschrift | International journal of theoretical and applied finance |
Jahrgang | 25 |
Ausgabenummer | 1 |
DOIs | |
Publikationsstatus | Veröffentlicht - 1 Feb. 2022 |
ASJC Scopus subject areas
- Volkswirtschaftslehre, Ökonometrie und Finanzen (insg.)
- Finanzwesen
Fields of Expertise
- Information, Communication & Computing
Fingerprint
Untersuchen Sie die Forschungsthemen von „A mean-field extension of the LIBOR market model“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Laufend
-
FWF - Risk Modelling - Analysis, Simulation und Optimierung
1/07/20 → 30/06/24
Projekt: Foschungsprojekt