A Kernel for Multi-Parameter Persistent Homology

René Corbet, Ulderico Fugacci, Michael Kerber, Claudia Landi, Bei Wang

Publikation: KonferenzbeitragPaper

Abstract

Topological data analysis and its main method, persistent homology, provide a toolkit for computing topological information of high-dimensional and noisy data sets. Kernels for one-parameter persistent homology have been established to connect persistent homology with machine learning techniques. We contribute a kernel construction for multi-parameter persistence by integrating a one-parameter kernel weighted along straight lines. We prove that our kernel is stable and efficiently computable, which establishes a theoretical connection between topological data analysis and machine learning for multivariate data analysis.
Originalspracheenglisch
PublikationsstatusVeröffentlicht - 2019
VeranstaltungShape Modeling International (SMI) - Simon Fraser University, Vancouver, Kanada
Dauer: 19 Jun 201921 Jun 2019

Konferenz

KonferenzShape Modeling International (SMI)
LandKanada
OrtVancouver
Zeitraum19/06/1921/06/19

Fingerprint Untersuchen Sie die Forschungsthemen von „A Kernel for Multi-Parameter Persistent Homology“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren