3D Pose Estimation from Color Images without Manual Annotations

Mahdi Rad, Markus Oberweger, Vincent Lepetit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/BerichtForschungBegutachtung

Abstract

3D pose estimation is an important problem with many potential applications. However, 3D acquiring annotations for color images is a difficult task. To create training data, the annotating is usually done with the help of markers or a robotic system, which in both cases is very cumbersome, expensive, or sometimes even impossible, especially from color images. Another option is to use synthetic images for training. However, synthetic images do not resemble real images exactly. To bridge this domain gap, Generative Adversarial Networks or transfer learning techniques can be used but, they require some annotated real images to learn the domain transfer. To overcome these problems, we propose a novel approach in this paper. Section II gives a short summary of our approach that uses synthetic data only, and Section III shows some results.
Originalspracheenglisch
TitelProceedings of the joint OAGM & ARW Workshop 2019
Redakteure/-innenAndreas Pichler, Peter M. Roth, Robert Slabatnig, Gernot Stübl
ErscheinungsortGraz
Herausgeber (Verlag)Verlag der Technischen Universität Graz
Seitenumfang1
ISBN (elektronisch)9783851256635
DOIs
PublikationsstatusVeröffentlicht - 2019
VeranstaltungARW & OAGM Workshop 2019: Austrian Robotics Workshop and OAGM Workshop 2019 - Steyr, Österreich
Dauer: 9 Mai 201910 Mai 2019

Konferenz

KonferenzARW & OAGM Workshop 2019
LandÖsterreich
OrtSteyr
Zeitraum9/05/1910/05/19

Fingerprint

Color
Robotics

Schlagwörter

    Dies zitieren

    Rad, M., Oberweger, M., & Lepetit, V. (2019). 3D Pose Estimation from Color Images without Manual Annotations. in A. Pichler, P. M. Roth, R. Slabatnig, & G. Stübl (Hrsg.), Proceedings of the joint OAGM & ARW Workshop 2019 Graz: Verlag der Technischen Universität Graz. https://doi.org/10.3217/978-3-85125-663-5-27

    3D Pose Estimation from Color Images without Manual Annotations. / Rad, Mahdi; Oberweger, Markus; Lepetit, Vincent.

    Proceedings of the joint OAGM & ARW Workshop 2019 . Hrsg. / Andreas Pichler; Peter M. Roth; Robert Slabatnig; Gernot Stübl. Graz : Verlag der Technischen Universität Graz, 2019.

    Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/BerichtForschungBegutachtung

    Rad, M, Oberweger, M & Lepetit, V 2019, 3D Pose Estimation from Color Images without Manual Annotations. in A Pichler, PM Roth, R Slabatnig & G Stübl (Hrsg.), Proceedings of the joint OAGM & ARW Workshop 2019 . Verlag der Technischen Universität Graz, Graz, Steyr, Österreich, 9/05/19. https://doi.org/10.3217/978-3-85125-663-5-27
    Rad M, Oberweger M, Lepetit V. 3D Pose Estimation from Color Images without Manual Annotations. in Pichler A, Roth PM, Slabatnig R, Stübl G, Hrsg., Proceedings of the joint OAGM & ARW Workshop 2019 . Graz: Verlag der Technischen Universität Graz. 2019 https://doi.org/10.3217/978-3-85125-663-5-27
    Rad, Mahdi ; Oberweger, Markus ; Lepetit, Vincent. / 3D Pose Estimation from Color Images without Manual Annotations. Proceedings of the joint OAGM & ARW Workshop 2019 . Hrsg. / Andreas Pichler ; Peter M. Roth ; Robert Slabatnig ; Gernot Stübl. Graz : Verlag der Technischen Universität Graz, 2019.
    @inbook{b82aead13aa2437690a62ce2cddd188e,
    title = "3D Pose Estimation from Color Images without Manual Annotations",
    abstract = "3D pose estimation is an important problem with many potential applications. However, 3D acquiring annotations for color images is a difficult task. To create training data, the annotating is usually done with the help of markers or a robotic system, which in both cases is very cumbersome, expensive, or sometimes even impossible, especially from color images. Another option is to use synthetic images for training. However, synthetic images do not resemble real images exactly. To bridge this domain gap, Generative Adversarial Networks or transfer learning techniques can be used but, they require some annotated real images to learn the domain transfer. To overcome these problems, we propose a novel approach in this paper. Section II gives a short summary of our approach that uses synthetic data only, and Section III shows some results.",
    keywords = "3D Object Pose Estimatio, 3D Hand Pose Estimation, Domain Transfer",
    author = "Mahdi Rad and Markus Oberweger and Vincent Lepetit",
    year = "2019",
    doi = "10.3217/978-3-85125-663-5-27",
    language = "English",
    editor = "Andreas Pichler and Roth, {Peter M.} and Slabatnig, {Robert } and Gernot St{\"u}bl",
    booktitle = "Proceedings of the joint OAGM & ARW Workshop 2019",
    publisher = "Verlag der Technischen Universit{\"a}t Graz",

    }

    TY - CHAP

    T1 - 3D Pose Estimation from Color Images without Manual Annotations

    AU - Rad, Mahdi

    AU - Oberweger, Markus

    AU - Lepetit, Vincent

    PY - 2019

    Y1 - 2019

    N2 - 3D pose estimation is an important problem with many potential applications. However, 3D acquiring annotations for color images is a difficult task. To create training data, the annotating is usually done with the help of markers or a robotic system, which in both cases is very cumbersome, expensive, or sometimes even impossible, especially from color images. Another option is to use synthetic images for training. However, synthetic images do not resemble real images exactly. To bridge this domain gap, Generative Adversarial Networks or transfer learning techniques can be used but, they require some annotated real images to learn the domain transfer. To overcome these problems, we propose a novel approach in this paper. Section II gives a short summary of our approach that uses synthetic data only, and Section III shows some results.

    AB - 3D pose estimation is an important problem with many potential applications. However, 3D acquiring annotations for color images is a difficult task. To create training data, the annotating is usually done with the help of markers or a robotic system, which in both cases is very cumbersome, expensive, or sometimes even impossible, especially from color images. Another option is to use synthetic images for training. However, synthetic images do not resemble real images exactly. To bridge this domain gap, Generative Adversarial Networks or transfer learning techniques can be used but, they require some annotated real images to learn the domain transfer. To overcome these problems, we propose a novel approach in this paper. Section II gives a short summary of our approach that uses synthetic data only, and Section III shows some results.

    KW - 3D Object Pose Estimatio

    KW - 3D Hand Pose Estimation

    KW - Domain Transfer

    U2 - 10.3217/978-3-85125-663-5-27

    DO - 10.3217/978-3-85125-663-5-27

    M3 - Chapter

    BT - Proceedings of the joint OAGM & ARW Workshop 2019

    A2 - Pichler, Andreas

    A2 - Roth, Peter M.

    A2 - Slabatnig, Robert

    A2 - Stübl, Gernot

    PB - Verlag der Technischen Universität Graz

    CY - Graz

    ER -